Math 55 Quiz 4 DIS 105

Name: 28 Feb 2022

1. (a) Use mathematical induction to show that
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for all positive integers n. [5 points]

(b) Show that the sum of any 5 consecutive perfect squares is divisible by 5. [5 points]

(a) Let P(n) be the proposition that 12 + 22 4 ... + n? = w.
12 =1= 123 50 P(1) is true.

Suppose P(k) is true for some positive integer k. Then
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so P(k+1) is true.
By mathematical induction, P(n) is true for any positive integer n.

(b) Solution 1: Mathematical induction
Let Q(n) be the proposition that
(n+1)* 4+ (n+5)°

is divisible by 5.
12 422 + 32 442 + 52 = 55 is divisible by 5, so Q(0) is true. Suppose Q(k) is true for
some nonnegative integer k. Then
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(k+1)24--- 4+ (k+5)? and 5k + 35 are divisible by 5, so (k+2)2 +--- + (k +6)? is
divisible by 5. In other words, Q(k + 1) is true.

By mathematical induction, Q(n) is true for any nonnegative integer n.

Solution 2: Use part (a) and Euclid’s lemma
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Now (n+5)(n+6)(2n+11) =n(n+1)(2n+ 1) (mod 5) so (n+5)(n+6)(2n+11) —
n(n+1)(2n+1) is divisible by 5. Since 5 and 6 are relatively prime, by Euclid’s lemma,
(n+1)2+--+ (n+5)? = pEBOEOCE on(ntDEED S Givigible by 5 as well.




