Math 55 Quiz 4 DIS 105

Name: \qquad

1. (a) Use mathematical induction to show that

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all positive integers n. [5 points]
(b) Show that the sum of any 5 consecutive perfect squares is divisible by 5 . [5 points]
(a) Let $P(n)$ be the proposition that $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$. $1^{2}=1=\frac{1 \cdot 2 \cdot 3}{6}$ so $P(1)$ is true.
Suppose $P(k)$ is true for some positive integer k. Then

$$
\begin{aligned}
1^{2}+2^{2}+\cdots+(k+1)^{2} & =\left(1^{2}+2^{2}+\cdots+k^{2}\right)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1)\left(\frac{k(2 k+1)}{6}+k+1\right) \\
& =(k+1) \frac{2 k^{2}+7 k+6}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
\end{aligned}
$$

so $P(k+1)$ is true.
By mathematical induction, $P(n)$ is true for any positive integer n.
(b) Solution 1: Mathematical induction

Let $Q(n)$ be the proposition that

$$
(n+1)^{2}+\cdots+(n+5)^{2}
$$

is divisible by 5 .
$1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55$ is divisible by 5 , so $Q(0)$ is true. Suppose $Q(k)$ is true for some nonnegative integer k. Then

$$
\begin{aligned}
(k+2)^{2}+\cdots+(k+6)^{2} & =\left((k+1)^{2}+\cdots+(k+5)^{2}\right)+(k+6)^{2}-(k+1)^{2} \\
& =\left((k+1)^{2}+\cdots+(k+5)^{2}\right)+5 k+35
\end{aligned}
$$

$(k+1)^{2}+\cdots+(k+5)^{2}$ and $5 k+35$ are divisible by 5 , so $(k+2)^{2}+\cdots+(k+6)^{2}$ is divisible by 5 . In other words, $Q(k+1)$ is true.
By mathematical induction, $Q(n)$ is true for any nonnegative integer n.
Solution 2: Use part (a) and Euclid's lemma

$$
\begin{aligned}
(n+1)^{2}+\cdots+(n+5)^{2} & =\left(1^{2}+2^{2}+\cdots+(n+5)^{2}\right)-\left(1^{2}+2^{2}+\cdots+n^{2}\right) \\
& =\frac{(n+5)(n+6)(2 n+11)}{6}-\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{(n+5)(n+6)(2 n+11)-n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Now $(n+5)(n+6)(2 n+11) \equiv n(n+1)(2 n+1)(\bmod 5)$ so $(n+5)(n+6)(2 n+11)-$ $n(n+1)(2 n+1)$ is divisible by 5 . Since 5 and 6 are relatively prime, by Euclid's lemma, $(n+1)^{2}+\cdots+(n+5)^{2}=\frac{(n+5)(n+6)(2 n+11)-n(n+1)(2 n+1)}{6}$ is divisible by 5 as well.

